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Motivation
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Flavor Physics

 Flavor physics studies where the different species 
of quarks (and leptons) come from.

 Many insights have come from this study:

 earth-shattering: P and CP violation;

 anticipation: existence of charm, mass of top.

 How many quark flavors in the LHC Era?  6
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Flavor Physics

 Flavor physics studies where the different species 
of quarks (and leptons) come from.

 Many insights have come from this study:

 earth-shattering: P and CP violation;

 anticipation: existence of charm, mass of top.

 How many quark flavors in the LHC Era?  6× 9
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Quarks
 3 SU(2) doublets

 Y = 1/6

 (u  d′)L

 (c  s′)L

 (t  b′)L

 ′ = electroweak basis

 6 SU(2) singlets

 Y = 2/3 –1/3

 uR d′R

 cR s′R

 tR b′R

 Different fields.
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Line of Attack

 Continuation of Belle at KEK-B.

 LHCb at LHC.

 BES in Beijing.

 SuperBelle, SuperB?, SuperDuperB???

 QCD, especially lattice QCD.
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Standard Model
and slightly beyond

 A sector with doublet structure breaks SU(2).

 The richness of flavor physics comes from the mass 
matrix that arises when this stuff (inevitably) 
interacts with L and R quark fields.

 Eigenvalues: masses.

 Eigenvectors/wf phases: CKM matrix.

6



CKM Matrix

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb
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CKM Matrix
this 
talk

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb
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CKM Matrix
this 
talk

fDs puzzle

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb
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 VCKM in 4-parameter subset of SU(3), with 
one irreducible phase ⇒ CP violation.

 Unitarity:

 6 dot-product constraints;

 6 cross-product constraints: triangles.

 CKM-ness implies that all triangles have same 
area: A = ½Im[V*ud Vub/V*cdVcb] = η̄/2.
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CKM Now
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Outline

 Status of lattice QCD.

 Determination of |Vcb| and |Vub|.

 The fDs Puzzle.
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Interplay
of flavor and high-pT physics

“Big Bang Theory” (an American TV comedy)
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Lattice QCD
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 Infinite continuum: 
uncountably many d.o.f.

 Infinite lattice: countably 
many; used to define QFT

 Finite lattice: can evaluate 
integrals on a computer; 
dimension ~ 108

a

L = NSa

L 4 =
 N

4a

Lattice Gauge Theory
〈•〉 =

1
Z

Z
DUDψDψ̄exp(−S) [•]
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MC hand

 Infinite continuum: 
uncountably many d.o.f.

 Infinite lattice: countably 
many; used to define QFT

 Finite lattice: can evaluate 
integrals on a computer; 
dimension ~ 108
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L 4 =
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Lattice Gauge Theory
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Z

Z
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Some Jargon
 QCD observables (quark integrals by hand): 





 Quenched means replace det with 1.

 Unquenched means not to do that.

 Partially quenched doesn’t mean “nf too small” but 
mval ≠ msea, or even D/ val ≠ D/ sea (“mixed action”).

〈•〉 =
1
Z

Z
DU

n f

∏
f =1

det(D/+m f )exp
(
−Sgauge

)
[•]
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Sea Quarks
 Staggered quarks, with rooted determinant, O(a2).

 Wilson quarks, O(a):

 tree or nonperturbatively O(a) improved;

 twisted mass term—auto O(a) improvement.

 Ginsparg-Wilson (domain wall or overlap), O(a2):

 D/γ5 + γ5 D/  = 2a D/ 2   implemented w/ sign(D/ W).
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 Many numerical simulations with sea quarks are 
called (perhaps misleadingly) “full QCD.”

 nf = 2: with same mass, omitting strange sea;

 nf = 3: may (or may not) imply 3 of same mass;

 nf = 2+1: strange sea + two as light as possible;

 nf = 2+1+1: add charmed sea to 2+1.

 “Full QCD” can also mean mval = msea, D/ val = D/ sea.
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 Two-point functions for masses 



 Two-point functions for decay constants: 



 Three-point functions for form factors, mixing: 

Correlators

〈π(t)π†(0)〉 = ∑
n

|〈0|π̂|πn〉|2 exp(−mπnt)

〈J(t)π†(0)〉 = ∑
n
〈0|Ĵ|πn〉〈πn|π̂†|0〉exp(−mπnt)

〈π(t)J(u)B†(0)〉 = ∑
mn
〈0|π̂|πm〉〈πn|Ĵ|Bm〉〈Bm|B̂†|0〉

×exp[−mπn(t−u)−mBm u]

π(t) = ψ̄uγ5Sψd :
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Two Challenges
 The second-greatest (numerical) challenge in 

LQCD is reducing the mass of valence quarks.

 The greatest challenge in LQCD is reducing the 
mass of sea quarks.

 Handle mval ≠ msea with “partially quenched chiral 
perturbation theory”:

 non-unitary effective theory to describe a non-
unitary underlying theory.
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 One Grassmann variable per site.

 Fermion doubling implies there are 16 degrees 
of freedom.

 Extensive theoretical and numerical evidence 
that these become 4 Dirac fermions in the 
continuum limit:

 beta function, anomalies, ... in PT;

 eigenvalues, index theorem, ... in MC.

Staggered Fermions
[Susskind; Karsten & Smit; Sharatchandra, Thun & Weisz]
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Tastes
taste

aΔ

aΔ

(D/+m)stag =





D/+m
D/+m

D/+m
D/+m
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Tastes
 The staggered Dirac operator can be written 

taste

aΔ

aΔ

(D/+m)stag =





D/+m
D/+m

D/+m
D/+m





20



Tastes
 The staggered Dirac operator can be written 








 Does the taste-breaking defect aΔ vanish in 
continuum limit?

taste

aΔ

aΔ

(D/+m)stag =





D/+m
D/+m

D/+m
D/+m
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 Does taste defect Δ have an anomalously 
large anomalous dimension?

 Most important consequence: 




where ξ labels irrep of Γ4 taste symmetry 
group (P, A, T, V, I); ΔP = 0.

 For nf flavors, (4nf)2 – 1 Goldstones.

m2
π,ξ = (mu +md)B+a2∆ξ,

m2
K,ξ = (md +ms)B+a2∆ξ,
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I
V
T
A

5
} Λ4a2

Λ2

needs confirmation

Q = ± I = 1, Q = 0 I = 0

m2
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 For sea quarks, reduce the number of tastes, by 
assuming 



[Hamber, Marinari, Parisi, Rebbi (1983)].

 Uncontroversial for 20 years, until we saw that it 
reproduces experiment.

[
det4(D/stag +m)

]1/4 .= det1(D/cont +m)

Rooting
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 If the taste breaking does not vanish, then the 
phantoms’ spectrum is split:

 the unitarity violations no longer cancel;

 taste non-singlet signals propagate faster than 
the (physical) taste singlets (non-local, but not 
the “expected” nonlocality).

 Still, we think, controlled by RSχPT.

Rooted & Staggered
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 The taste-breaking defect must vanish in the 
continuum limit:

 supported by RG papers of Shamir and 
experience with scaling in QCD.

 Functional Γ(π, σ, ...) must behave such that 
(non-unitary) RSχPT [Aubin, Bernard] to 
describe the computed correlators:

 supported by numerical evidence.

Essentials
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What Others Want
 Famous theorist, December 2006:

 “I’ll believe a 3% lattice [QCD] theory error when the 
lattice has produced one successful prediction and 
several 3% postdictions.”

 Nine 1–3% postdictions in March 2003 (in PRL).

 Three predictions in August 2004; November 
2004; June 2005 (all in PRL).  Verified by 
FOCUS, Belle, CLEO; CDF; CLEO, BaBar….
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2+1 Sea Quarks
HPQCD, MILC, Fermilab Lattice, hep-lat/0304004

0.9 1.0 1.1
quenched/experiment

Υ(1P-1S)

Υ(3S-1S)

Υ(2P-1S)

Υ(1D-1S)

ψ(1P-1S)

2mBs 
− m

Υ

3m
Ξ
 − mN

fK

f
π

0.9 1.0 1.1
(nf = 2+1)/experiment

 a = 0.12 & 0.09 fm

 O(a2) improved

 FAT7 smearing

 2ml < mq < ms

 π, K, Υ(2S) input

27



Predictions
 Semileptonic form factor 

for D → Klν

 Mass of Bc meson

 Charmed decay constants

nf = 0 2+1 expt.6200

6300

6400

6500

6600

6700

m
Bc

 (M
eV

/c
2 )

hep-lat/9902025 [UKQCD]
quoted quenching error
hep-lat/04011027 [HPQCD/Fermilab]
hep-ex/0505076 [CDF]
(¯m̄

ψ
 + m

Υ
)/2

2004
2005
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lattice QCD [Fermilab/MILC, hep-ph/0408306]
experiment [Belle, hep-ex/0510003]
experiment [BaBar, 0704.0020 [hep-ex]]
experiment [CLEO-c, 0712.0998 [hep-ex]]
experiment [CLEO-c, 0810.3878 [hep-ex]]

D → Klν
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CKM
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Scope of this talk
 Neutral meson mixing: K, B, Bs.

 Semileptonic form factors:

 K → πlν for |Vus|: RBC+UKQCD, 2007

 D → Klν, D → πlν: Fermilab+MILC, 2004

 B → D*lν for |Vcb|; B → πlν for |Vub|

 Leptonic decay constants: fπ, fK, fD, fDs, fB.
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|Vcb|
alia et Jack Laiho et al., arXiv:0808.2519

 |Vus|, |Vub|, and |Vcb| are the three real parameters of 
the CKM matrix.

 |Vcb| normalizes the unitarity triangle: enters all 
flavor physics.

 Inclusive b → clν: OPE + PT + measured moments.

 Exclusive B → D*lν: (zero recoil) form factor:

F (1) = hA1(1), 〈D∗|Aµ|B〉 = i
√

2mD∗2mBε̄∗µ hA1(1)
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 Previous quenched calculation (2001): 



used till now with HFAG |Vcb|F(1) to get |Vcb|.

 Three double ratios, devised so that all 
uncertainties scale with F–1, not F.

 Update to 2+1 sea quarks with a single ratio—
more direct & much less computer time.

stats match a χPT nf=0

F (1) = 0.913+0.024
−0.017±0.016+0.003

−0.014
+0.000
−0.016

+0.006
−0.014
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 Also introduces ratios of matrix elements to 
disentangle chiral extrapolation from heavy-
quark discretization effects: 





 Reconstruct

hA1 = hA1(m
fid
x , m̂fid,mfid

s ,a→ 0)
×Rval(mx, m̂′,m′

s,a)×Rsea(m̂′,m′
s,a)

Rval(mx, m̂′,m′
s,a) :=

hA1(mx, m̂′,m′
s,a)

hA1(mfid
x , m̂′,m′

s,a)
,

Rsea(m̂′,m′
s,a) :=

hA1(m
fid
x , m̂′,m′

s,a)
hA1(mfid

x , m̂fid,mfid
s ,a)

.
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m
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F (1) = 0.921±0.013±0.008±0.008±0.014±0.007
mQ
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|Vub|
alia et Ruth Van de Water, arXiv:0811.3640

 |Vus|, |Vub|, and |Vcb| are the three real parameters of 
the CKM matrix.

 |Vub| gives a tree constraint comparable to sin 2β.

 Inclusive b → ulν: keep control of OPE (or shape 
functions, or ...) in region with no charm.

 Exclusive B → πlν: form factor f+(q2)

〈π|V µ
⊥|B〉 = (pB + pπ)

µ
⊥ f+(q2), q · p⊥ = 0
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 Problem to determine |Vub|:

 lattice best when pπ small, so q2 ≈ q2max,

 but event rate highest when q2 ≈ 0.

 Until now: find least bad q2 of both worlds, or 
introduce Ansatz for q2 dependence.

 Here: a model independent simultaneous fit.
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 Let 

inspired by unitarity. 


  




 For B → πlν kinematics –0.34 < z < 0.22.

X XXXXXX

q2

!

z

z =
√

t+−q2−
√

t+− t0√
t+−q2 +

√
t+− t0

,
t± = (mB±mπ)2

t− < t0 < t+
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 Unitarity guarantees convergent expansion in 
z(t): 





 New approach

 fit lattice & expt separately: compare ak/a0;

 fit lattice & expt together, yielding |Vub|.

P(t)φ(t, t0) f (t) =
∞

∑
k=0

akzk,
N

∑
k=0

a2
k ≤ 1

B* pole asymptotics
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plot from arXiv:0906.2498
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lattice QCD [Fermilab/MILC, 0811.3640 [hep-lat]]
experiment [BaBar, hep-ex/0612020]

B → πlν

Lattice QCD + 12-bin BaBar measurement.
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|Vcb| & |Vub|
 Using F(1) to get |Vcb|: 




with latest HFAG.

 Compared to inclusive: 



from HFAG/ICHEP08.

 Final z-fit to get |Vub|: 



with BaBar 12-bin data.

 Compared to inclusive: 



from HFAG/ICHEP08.

103|Vcb| = 38.7(9)(10)

Being sorted out for CKM 2008 report.

103|Vub| = 3.38(36)

103|Vub| = (3.76–4.87)±0.35103|Vcb| = 41.6(8)
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fDs Puzzle

45



Leptonic Decay
 The branching fraction for a pseudoscalar meson 

to decay into a lepton-neutrino pair, in the SM, is 



 quark-W vertex leads to CKM;

 helicity (ml << mD) or phase-space (ml ≈ mD) 
suppression.

 lattice QCD for fDs.

B(Ds → !ν) =
mDsτDs

8π
f 2
Ds |GFV ∗csm!|2

(
1−

m2
!

m2
Ds

)2
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fπ and fK

 These are thought of as tests of (lattice) QCD.

 Experiments yield |Vud|fπ and |Vus|fK:

 |Vud| from nuclear 0+ → 0+ transitions;

 |Vus| from semileptonic K → πlν.

 Many groups (MILC, RBC, NPLQCD, Aubin-
Laiho-Van deWater, HPQCD, BMW) have these 
(or ratio fK/fπ) with accuracy at 2% level.
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110 120 130 140 150 160 170 180
f
π
 (MeV)           fK (MeV)

quenched

hep-lat/0304004

0903.3598 [hep-lat]

0706.1726 [hep-lat]

0804.0473 [hep-lat]

0810.4328 [hep-lat]

 Reproducible:

 Asqtad on asqtad

 HISQ on asqtad

 DWF on DWF

 DWF on asqtad

 Others have fK/fπ.

MILC

MILC

HPQCD

RBC/UKQCD

ALV
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fD and fDs

 These are thought of as tests of (lattice) QCD.

 Experiments (recently) yield |Vcd|fD and |Vcs|fDs:

 |Vcx| from CKM unitarity.

 First unquenched calculations [Fermilab/MILC] 
agreed, at 7% level, with first good measurements 
(CLEO for D, BaBar for Ds).
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〈0|s̄γµγ5c|Ds〉 = i fDs pµ.

Ds → lν
 Ds → lν should be the easiest leptonic decay for 

lattice QCD.

 A simple matrix element

 No light valence quarks.

 Counting experiment at CLEO, B factories.

 New physics thought to be very unlikely.
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And then something funny happened (end 2007)...

BaBar

Belle
CLEO

CLEO πν
CLEO eνν

Fermilab/MILC
HPQCD

a 3.8σ discrepancy, or 2.7σ ⊕ 2.9σ.

2+1

χ2/dof = 0.67
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Updates from FPCP (CLEO) and Lat’08 ...

BaBar

Belle
CLEO

CLEO πν
CLEO eνν

Fermilab/MILC
HPQCD

a 3.6σ discrepancy, or 2.9σ ⊕ 2.2σ.

2+1

χ2/dof = 0.13
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fDs

old (PDG)
µν
τν
latQCD
nf = 2
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With CLEO’s papers of January 12, 2009

BaBar

Belle
CLEO

CLEO πν
CLEO eνν

Fermilab/MILC
HPQCD

a 3.0σ discrepancy, or 2.5σ ⊕ 1.9σ.

2+1

χ2/dof = 0.73

ETMC

200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350
fDs

old (PDG)
µν
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A Puzzle

 Experimental errors?

 Radiative corrections?

 CKM?

 Lattice QCD?

 Unlikely: stats limited.

 No: 1–2%

 No: need |Vcs| > 1.1.

 Let’s see.
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263.1 ± 6.7 
MeV

HPQCD
241±3 linear in a2: 239; quad in a2: 242;

linear in a4: 245.

As the lattice gets finer, the discrepancy grows:

slope is 
O(αsmcΛa2)
as expected
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If mc (set from ηc) were retuned to flatten this, 
fDs (at a ≠ 0) would not change much.
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Error Budget

fK=f! fK f! fDs
=fD fDs

fD !s=!d

r1 uncerty. 0.3 1.1 1.4 0.4 1.0 1.4 0.7
a2 extrap. 0.2 0.2 0.2 0.4 0.5 0.6 0.5
Finite vol. 0.4 0.4 0.8 0.3 0.1 0.3 0.1
mu=d extrap. 0.2 0.3 0.4 0.2 0.3 0.4 0.2
Stat. errors 0.2 0.4 0.5 0.5 0.6 0.7 0.6
ms evoln. 0.1 0.1 0.1 0.3 0.3 0.3 0.5
md, QED, etc. 0.0 0.0 0.0 0.1 0.0 0.1 0.5

Total % 0.6 1.3 1.7 0.9 1.3 1.8 1.2

Δq = 2mDq – mηc

charmed sea     << 1%?
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Other Results
arXiv:hep-lat/0610092  & arXiv:0706.1726 [hep-lat]

what expt HPQCD

mJ/ψ – mηc 118.1 111 ± 5‡ MeV

mDd 1869 1868 ± 7 MeV

mDs 1968 1962 ± 6 MeV

Δs/Δd 1.260 ± 0.002 1.252 ± 0.015

fπ 130.7 ± 0.4 132 ± 2 MeV

fK 159.8 ± 0.5 157 ± 2 MeV

fD 205.8 ± 8.9* 207 ± 4 MeV

*CLEO arXiv:08062112     ‡annihilation corrected
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What if

 ... the discrepancy is real?

 Then it must be non-Standard physics.

 How wacky would a non-Standard model be?

 It turns out particles that are already being 
considered can do the trick.

 B.A. Dobrescu & ASK, arXiv: 0803.0512
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 Effective interactions 



can be induced by heavy particles of charge +1, 
+2/3, –1/3. 



 Charged Higgs, new W′; leptoquarks.

New Particles

Leff =
C!

A
M2 (s̄γµγ5c)(ν̄Lγµ!L)+

C!
P

M2 (s̄γ5c)(ν̄L!R)+H.c.
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Beyond SM
 New W′ boson: unlikely.

 Charged Higgs: 

 Model II destructively interference;

 BAD & ASK found new model.

 Leptoquarks:

 J = 0, (3, 1, –1/3), aka , can explain the effect.d̃
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 Charged Higgs model predicts a similarly-
sized deviation in D → lν, now disfavored:

new CLEO:  205.8±8.9 MeV

new Fermilab/MILC:  207±11 MeV

HPQCD:  207±4 MeV

150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
fD (MeV)

µν
latQCD
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 The generic bounds on mass/coupling: 




any non-Standard explanation of the effect is 
observable at the LHC. 

 Leptoquarks: .

LHC

M
(ReC!

A,P)1/2 !
{

710 GeV, 920 GeV for ! = τ
850 GeV, 4500 GeV for ! = µ

gg→ d̃ ¯̃d→ !+
1 !−2 jc jc
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Conclusions
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 Lattice QCD with 2+1 staggered sea quarks 
has provided many results since 2003;

 now 2+1 Wilson and DWF sea too.

 Broad, and often precise, agreement with 
experiment in hadron masses, quarkonium 
splittings, decay properties; αs.

 Enables new determinations of |Vcb| & |Vub|.

 (Matrix elements for neutral-meson mixing.)
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 The outlier is fDs, which should be easy:

 valence quarks aren’t light;

 PCAC normalization (w/ stag. or DWF).

 Experimental statistical error is yardstick for 
discrepancy: with 2×(lattice error) still 2.4σ.

 CLEO done; BaBar & Belle could revisit; 
BES will go further in a few years.

 If new particle, LHC will pair produce.
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Backup
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 Suppose someone with a good imagination 
found a way to speed up “your favorite” 
fermions by substituting 



with four “tastes,” but no taste breaking.

 This is fine when det is real and positive.

 (So it doesn’t work for m < 0, or μ ≠ 0.)

det1(D/+m) = {det4[(D/+m)⊗14]}1/4

Gedanken Algorithm
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 One can introduce sources:  
  
  
  
where is source for  .

 Now generalize the sources: 



which means “ask more.”

(Ja,Ja
5 ) ψ̄(T a,T aγ5)ψ

{det4[(D/+m+ J + J5)⊗14]}1/4

{det4[(D/+m)⊗14 + J + J5]}1/4
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 Start with (       = gauge-field measure) 



 All correlators taken in original, taste-
symmetric ensemble.

 Legendre transform    ; 
derive mass matrices (for constant fields) 
 


 Find usual pattern of spontaneous breaking.

DU

Z(J,J5) =
Z

DU {det4[(D/+m)⊗14 + J + J5]}1/4

JA→ σA, JA
5 → πA

∂2Γ
∂σA∂σB ,

∂2Γ
∂πA∂πB
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 This formulation has (4nf)2 – 1 pseudo-
Goldstone bosons, instead of (nf)2 – 1.

 The extra ones are phantoms—a figment of 
the algorithm’s imagination.

 Their total contribution to any tasteless 
correlation function must cancel.

 Not unitary; not worrisome either.

 A safe house for phantom Goldstones.
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